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Channel flow of smectic films
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The hydrodynamics of smectic films at an air-water interface is discussed, with particular focus on the
viscous response of the film under flow normal to the layers. The corrections to the response functions of the
smectic phase, arising from the coupling between the flow and the smectic order parameter, are calculated. The
results for the effective viscosity are illustrated by analyzing smectic film flow in a channel geometry. Two
limiting cases of the flow, namely, motion dominated by dislocation-induced shear-softening and dislocation-
free motion dominated by the permeation mode of mass transfer, are studied. The effect of drag from a finite
depth liquid subphase is considered. The results are compared to those for hexatic and liquid films.

PACS number~s!: 61.30.2v, 68.10.Et, 47.50.1d, 83.70.Jr
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I. INTRODUCTION

The rheological properties of liquid crystalline system
continue to be of considerable interest because of their
and complex behavior. Thin films of anisotropic molecul
such as Langmuir monolayers at an air-water interface,
relevant to many industrial applications, and as such, h
been subjected to detailed experimental studies. In partic
the viscous response of liquid crystalline films is often fou
to be non-Newtonian. Among the dominant causes is c
pling of the flow to molecular alignment. In smectic film
~crystalline in one dimension, but liquidlike in the other!, the
presence of unbound dislocations becomes a major fa
affecting viscous response. When the film is riding over
other phase, usually water, viscous drag from this subph
if large, can modify the flow profile of the film quite signifi
cantly.

The coupling between molecular alignment and flow h
been seen in some cases in experiments by Mingotaudet al.
@1#, Maruyamaet al. @2#, and Kurnaz and Schwartz@3#. The
experiments involve Langmuir monolayers of rod-shap
molecules that are usually tilted with respect to the surf
normal, forming a hexatic phase with anisotropic in-pla
bond orientations. Typically the film consists of domains o
liquid crystalline phase coexisting with another liquid cry
talline phase or with the liquid expanded phase~no orienta-
tional order!. The domains can be distinguished throu
Brewster angle microscopy which is sensitive to molecu
orientation, making it possible to follow the shape and mo
ment of the domains along the flow. There is evidence
nonlinear shear response@3,4# emerging from such studies
as well as of the molecular orientation being influenced
flow @1,2#.

Shear thinning has often been observed in experim
involving Langmuir monolayers@3,4#. A possible explana-
tion of this phenomenon is provided by Bruinsmaet al. @5# in
terms of shear-induced defect proliferation. Dislocation
fects in a solid, if unbound, can relax an applied strain
moving in response to the resulting stress. Since the forc
such a defect depends on its ‘‘charge,’’ oppositely charg
defects tend to separate under an external stress. Tig
bound pairs cannot contribute to the steady state viscou
sponse, although they can modify the response at non
PRE 611063-651X/2000/61~4!/3942~9!/$15.00
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frequencies and wave vectors@6#. However, at finite tem-
peratures, bound pairs can dissociate under this separ
influence which effectively tilts the potential well confinin
the pair, liberating them once they escape beyond a pote
barrier. Shear thinning might be expected once the str
induced density of free dislocations becomes comparabl
those present due to thermal activation. Being thermally
tivated, the free dislocation density, and hence the visc
response, should be very sensitive to temperature. Exp
ments conducted by Schwartz@7# on anisotropic hexatic and
crystalline phases of Langmuir monolayers do indeed se
strong temperature dependence of the critical shear rate
onset of non-Newtonian behavior.

In this paper we study a simpler problem, the linear h
drodynamics of two-dimensional smectic films in a chan
flow geometry. Dislocations still play an important role, a
it is easier to analyze their effect on the smectic order e
bodied in asingleset of Bragg planes. Although we do no
study this here, channel flow of two-dimensional smect
would also be a promising context in which to explore
tractable model of shear thinning.

In the absence of external strains, free dislocations or
clinations don’t occur in the most ordered two-dimension
phases; they are instead bound in pairs of opposite cha
by a logarithmic potential. However, in two-dimensional la
ered materials such as smectics or cholesterics, there is
ponential decay of translational order in both the layer
direction, and the liquidlike direction along the layers@8#. As
a result, isolated dislocations have a finite energy and exis
a finite concentration at any finite temperature. In these m
terials, shear response at long wavelengths is primarily
to the free dislocations; the viscosity diverges inversely
the dislocation density when it becomes small at low te
peratures. This divergence is cut off at short length scales
the permeation mode of mass transfer in smectics, whe
layer distortion induces molecules to jump from layer
layer without affecting the layering structure, allowing th
distortion to relax over a finite distance.

In three dimensions, one finds diverging smectic respo
functions near the second-order smectic-to-nematic tra
tion. The coupling of the nematic order parameter to fluct
tions in the magnitude of the smectic order parameter cau
among other quantities, the permeation constant of the sm
3942 © 2000 The American Physical Society
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tic and the viscosity denotedh1 in the literature, to diverge
@9#. However, in two dimensions, a dislocation-driven the
modynamic transition to the nematic state occurs at z
temperature@8#. At a finite temperature, the nematic me
into an isotropic liquid via a disclination unbinding trans
tion. Below this temperature, local smectic order is disrup
by singularities in the phase of the order parameter~i.e.,
dislocations!. However, the local smectic order parame
has a finite magnitude, and fluctuations in the magnitude
irrelevant in the renormalization sense@10#. Thus renormal-
ization of the elastic coefficients and response functions a
the three-dimensional~3D! case does not occur.

Coupling of the film flow to a subphase~a fluid body
supporting the film on its surface! can significantly alter its
flow profile. Such experiments have been conducted
Schwartz and co-workers@11,3# using Langmuir monolayers
on water. When the subphase drag dominates the flow,
flow profile becomes semielliptical. Stone@12# has per-
formed calculations which confirm this profile and also yie
the profiles interpolating between the elliptical and the pa
bolic, as the viscosity of the film relative to that of the su
phase is increased. The depth of the subphase was a
parameter in the calculations, since decreasing the dept
sults in increased drag. As we show below, Stone’s res
can also be applied to hexatic films.

In the next section, we briefly review the equilibriu
properties of two-dimensional hexatic@13# and smectic@8#
films. Section III discusses the hydrodynamics of tw
dimensional smectics, and the implications of the coupl
between the smectic order parameter and the flow for
response functions of both quantities. Section IV looks
flow of a smectic film in a channel flow geometry, and e
amines the behavior in different regimes of the chan
width. In Sec. V, we consider the effect of subphase drag
the smectic film flow as compared to previous results for
isotropic film. The results of both Secs. IV and V are co
sistent with the results of Sec. III for the effective viscosi
The last section summarizes the results of this paper.

II. REVIEW OF HEXATIC AND SMECTIC FILMS

It was recognized quite some time ago that tw
dimensional films allow for an unusual phase diagram ch
acterized by an intermediate hexatic phase, separating
solid and conventional liquid phase. The origin of this ph
nomenon lies in the pronounced role of dislocations, i
pointlike translational defects in a two-dimensional cryst
Dislocations interact via elastic deformations of the so
similar to charges in a two-dimensional Coulomb gas. Bel
the melting temperature dislocations of opposite Burg
vector are bound in pairs and the overall effect is a fin
renormalization of the elastic moduli. There is quasi-lon
range translational and long-range orientational order wh
manifests itself in a structure factor as measured by, e
x-ray scattering, which exhibits a regular array of qua
Bragg peaks.

At the melting temperature the solid melts into a hexa
when these dislocations unbind and destroy the quasi-lo
range translational order just as in a liquid. However,
hexatic retains a quasi-long-range sixfold symmetry. A
consequence the structure factor now exhibts concentric
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fraction rings which have an angular modulation superi
posed ~this modulation vanishes as a small power of t
system size with increasing illumination area!. At a still
higher temperature this modulation disappears and
hexatic melts into a conventional isotropic liquid with bo
short-ranged translational and orientational order.

The free energy of a hexatic involves an addtitional te

dF5
1

2
KAE d2r u“uu2, ~2.1!

which describes the long-wavelength distortions of the lo
bond angleu. The temperature-dependent stiffness const
KA is finite in the hexatic phase. A renormalization calcu
tion shows thatKA jumps from an universal value to zer
when the hexatic melts via a Kosterlitz-Thouless transit
into an isotropic liquid.

The hydrodynamics of partially ordered hexatic films h
been studied in detail by Zippeliuset al. @13#. These authors
find a correction to the effective viscosity under flow cond
tions where the hexatic bond orientation is pinned at
boundaries, as compared to the case where the bond ori
tion is free to rotate. The correction comes from coupling
the flow to the bond orientation order parameter under
constraint imposed by the boundaries~see Appendix A of
Ref. @13#!.

A similar coupling can be enforced by imposing a pre
sure gradient on the flow. In the experiments conducted
Kurnaz and Schwartz@3# on hexatic film flow, the domain
structure of the hexatic mesophase can impose constrain
the bond orientation at domain boundaries, thus increas
the viscosity from its bare value. Annealing of the doma
would then lead to a reduction in the effective viscosity. T
experimental signature of this effect would be a tim
dependent viscous response. Some transients have in
been observed in these experiments, although other fac
may be involved, such as domain boundary elasticity@7# and
shear thinning.

To illustrate how to incorporate effects of a subphase i
the hydrodynamics of a partially ordered film, we adapt t
analysis of Ref.@12# to films with hexatic order. In the pres
ence of a subphase, the hydrodynamic equations of mo
for a hexatic are modified by adding a subphase drag term
the viscous force: denoting byx the co-ordinate across th
channel,z along the channel, andy along the channel depth
~see Fig. 1!, one derives the equations of motion@13#

FIG. 1. Channel flow geometry with a subphase. The film a
the barriers forming the channel are on the surface of a water ta
A surface pressure gradient is applied to the film along the chan
On the right are the typical flow profiles at various depths.
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]gz

]t
5p81]xS h]xvz2

KA

2
]x

2u D2hb ]yvzu f i lm sur f ace,

~2.2a!

]u

]t
5

]xgz

2r
1G6KA]x

2u, ~2.2b!

whereg5rv is the surface momentum density,G6 the ki-
netic coefficient corresponding to dissipative processes of
hexatic bond-angle order,h the surface shear viscosity,hb
the viscosity of the bulk subphase, andp8 the surface pres
sure gradient driving the film down the channel.

Assuming]xu is time independent in the steady state,
have ] t]xu50. Therefore] tu must be constant across th
channel. Sincegz is an even function ofx in this flow situa-
tion, ] tu is odd, and hence, must be zero. Equation~2.2b!
then gives us the coupling between the flow and the b
orientation:

]x
2u52

1

2rG6KA
]xgz . ~2.3!

Upon substituting this result into Eq.~2.2a!, we find

]gz

]t
505p81S h1

1

4G6
D ]x

2vz2hb ]yvzu f i lm sur f ace.

~2.4!

Thusgz obeys an equation of motion identical to that for
isotropic film with a subphase, but with the modified visco
ity h11/4G6, and we can take over the results of Ref.@12#.
As we shall see~Sec. V!, this simplification does not apply to
smectic flow.

In contrast to hexatics, smectics are characterized b
crystal-like periodic modulation of the density along one
rection, say, thez direction, and liquidlike correlations per
pendicular to it. In two dimensions, we take this to be thx
direction. The preferred orientation of the ‘‘layers’’ is als
the average direction along which the directorsn̂ of the nem-
atic molecules are oriented. Although it represents a spo
neously broken rotational symmetry, the layer orientat
can be forced by boundary conditions on the molecules
even by flow. Smectic order is characterized by a wave v
tor q05 ẑ2p/d, whered is the layer spacing, usually slightl
larger than the molecular length.

The smectic density wave can be represented as@14#

r~r !5r0@11c~r !eiq0•r#. ~2.5!

Here,c(r ) is the complex smectic order parameter: its a
plitude represents the strength of the smectic order
whereas the phasef(r )5q0u(r ) describes the phonons a
sociated with broken translational symmetry along the lay
ing direction. Phonons in two dimensions are very effect
in destroying the one-dimensional translational order: T
correlation ^c(r )c* (0)& decays as the exponential of
power of the displacement. Since the square of the w
vector appears in the exponent@8#, the contributions of
higher harmonics ofq0 in the density modulation are les
important.
e
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The Landau-Ginzburg free energy describing the sme
takes the form@15#

F5E d2r Fa

2
ucu21

u

4
ucu41

ci

2
u]zcu21

c'

2
u~]x2 iq0dn!cu2

1
K1

2
~]xdn!21

K3

2
~]zdn!2G . ~2.6!

Here,K1 and K3 are splay and bend elastic constants. T
twist elastic constantK2 is absent in two dimensions. Th
coupling between]xc anddn[(n̂2 ẑ)• x̂ is required to sat-
isfy the rotational invariance ofF. Terms of order higher
than quadratic in the order parameter and its gradients h
been neglected. Well below the mean-field smectic-nem
transition temperature, fluctuations in the amplitude ofc can
also be ignored, and in the absence of singularities inn̂ ~dis-
clinations!, dn can be integrated out.The remaining lon
wavelength fluctuations can be expressed completely
terms of the layer displacementu(r ) as @14,8#

F5E d2r
1

2
B@~]zu!21l2~]x

2u!2#, ~2.7!

with B5c0
2q0

2ci , and l25K1 /B. Uniform gradients ofu
along the layer direction (]xu) don’t cost any energy, be
cause they represent tilting of the layering direction. T
important difference compared to two-dimensional soli
hexatics, etc., implies that the lowest energy defects in
system, dislocations, have afinite energy ED and are not
constrained to be bound in pairs at low temperatures@8#.

Whereas a smectic with thermally excited phonons wo
behave like a nematic with only a splay degree of freedo
the presence of dislocations allows for bend in the aver
layer orientation over scales larger than the typical sizejD of
a correlated ‘‘smectic blob’’ @8#, given by jD

2 [nD
21

'aD
2 eED /kBT (aD is a dislocation core diameter,aD

2

;dAld). Therefore the long-wavelength behavior of th
smectic is that of a nematic with free energy

F5E d2r
1

2
@K1~]xdN̂!21K3~]zdN̂!2#, ~2.8!

whereN̂ denotes the layer normal, andK3}jD
2 . As discussed

by Nelson and Pelcovits@16#, nonlinearities in the nematic
free energy modify the nematic Frank constantsK1 andK3

such that at scales longer thandejD
2 /a2

the nematic can be
described by a single Frank constant}jD

2 . In practice, this
length scale can be very large compared to typical sys
sizes, so one usually sees a constant nematic describe
two Frank constants. A study of the dynamics of smec
films, taking dislocations into account@8#, yields nematic
behavior corresponding to Eq.~2.8! at long length scales
with a nematic kinetic coefficient that vanishes likenD
}e2ED /kBT at low temperatures.

III. SMECTIC HYDRODYNAMICS

The hydrodynamic variables for a two-dimensional sm
tic are the layer displacementu, and the conserved momen
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PRE 61 3945CHANNEL FLOW OF SMECTIC FILMS
tum densitiesgx , gz . In this section we focus for simplicity
on the dynamics of free-standing smectic films@17#, where
the momentum is conserved to a good approximation.
drag due to a liquid subphase is considered in Sec. V.
assume the smectic to be incompressible, and so neglect
sity fluctuations, setting the densityr5const and conse
quently ]xgx1]zgz50. The viscous stress tensor of a
uniaxial two-dimensional fluid is characterized by four ind
pendent viscosities~ as opposed to five for the three
dimensional case!. Incompressibility reduces this number
2. The independent components of the symmetric~traceless!
strain rate tensor can be written as (]zgx1]xgz)/2 and
(]xgx2]zgz)/2, respectively, which have to be related to t
viscous stress tensors i j8 . Symmetry impliessxz8 5n(]zgx

1]xgz),sxx8 2szz8 5(n2n8)(]xgx2]zgz). The trace sxx8
1szz8 can be absorbed in the pressure, and in the follow
we assume that this has been done already. Upon deno

h[2
dF
du

5B~]z
22l2]x

4!u, ~3.1!

the equations of motion can be written as@14#

]u

]t
5

gz

r
1lph, ~3.2a!

]gx

]t
52]xp1n]z

2gx1n8]x]zgz , ~3.2b!

]gz

]t
5h2]zp1n]x

2gz1n8]z]xgx , ~3.2c!

wherep is the surface pressure andlp the permeation con
stant for the smectic. Permeation refers to the dissipa
mode of mass transfer in smectics where the molecules j
from layer to layer in order to relax a layer distortion.

Dislocations in the smectic introduce cuts into the d
placement field, but it is possible to define locally the gra
ents5“u as a single-valued quantity@8#. In the presence o
dislocations,sx and sz are considered as independent va
ables. Since there are cuts in the displacement field, the
integral *Gs•dr does not vanish for closed loopsG if the
loop encloses dislocations. This line integral counts the nu
ber of cuts in units of the layer spacingd. Stokes’ theorem
implies “3s52 ŷdm(r ), where m(r ) is the dislocation
density. Since the number of dislocations is conserved
has the continuity equation

] tm1“•JD50, ~3.3!

where JD is the two-dimensional dislocation current. Th
time evolution of the ‘‘strain’’ s can be inferred from its
irrotational and its solenoidal part

]s

]t
5“

]u

]t
1dŷ3JD. ~3.4!

A Fokker-Planck description for the diffusion of the disloc
tions in the strained smectic yields an expression for
dislocation current@8#
e
e

en-

-

g
g

e
p

-
-

-
ne

-

e

e

JD5nDG•f2TG•“m. ~3.5!

Here we have introduced the unsigned dislocation den
nD ; we have also setkB51 for convenience. The mobility
tensorG is diagonal in the coordinate system aligned w
the preferred axis of the smectic. Since the principal val
Gz andGx correspond to dislocation glide and climb, respe
tively, we expectGz@Gx . A strain results in a net force on
dislocations, viz., the 2D analog of the Peach-Koehler fo
f5d(Bsz ,Bl2]x

2sx). Thus strain can be released by a flow
dislocations. This process is similar to the charge separa
due to an applied electric field in a semiconductor. Note t
the Einstein relation connects the mobility embodied in
first term to the diffusion constant implicit in the secon
through the common matrixG.

For later purposes we also include external stressess i j
ext

in the momentum balance. The equations of motion are t

]gx

]t
52]xp1n]z

2gx1n8]x]zgz2]xsxx
ext2]zsxz

ext ,

~3.6a!

]gz

]t
5B~]zsz2l2]x

3sx!2]zp1n]x
2gz1n8]z]xgx2]xszx

ext

2]zszz
ext , ~3.6b!

]sx

]t
5]x

gz

r
1lpB~]x]zsz2l2]x

4sx!1Gz@nDd2Bl2]x
2sx

2T]z~]xsz2]zsx!#, ~3.6c!

]sz

]t
5]z

gz

r
1lpB~]z

2sz2l2]x
3]zsx!2Gx@nDd2Bsz

2T]x~]xsz2]zsx!#. ~3.6d!

Ignoring the external stresses one can calculate the ei
modes of the system. If conservation of momentum is
glected@8#, Eqs.~3.6! lead in the limit of long wavelengths
and low frequencies to a relaxation frequency forsz ~which
describes layer compression!

vsz
52 iGxnDd2B, ~3.7!

and forsx ~i.e., layer undulations! a diffusive frequency

vsx
~q!52 i ~GznDd2Bl2qx

21TGzqz
2!. ~3.8!

Using the relationdn5]xu @14#, this last result correspond
to a nematiclike behavior for the directorN̂5 ẑ1sxx̂. Includ-
ing gx ,gz in the hydrodynamic treatment introduces a pair
coupled g-sx modes with both diffusive and propagatin
characteristics. The pressure is eliminated via the inco
pressiblity condition in Fourier spaceqxgx1qzgz50. The
use of the transversal momentum densityqg'5qzgx2qxgz
results to leading order in the wave vector in
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2 ivg'52 iB
qx

q
~qzsz1l2qx

3sx!2nq2g'

1~2n12n8!
qx

2qz
2

q2
g' , ~3.9a!

2 ivsx52 i
qx

2

qr
g'2~GznDd2Bl2qx

21TGzqz
2!sx

2~lpB2TGz!qxqzsz , ~3.9b!

2 ivsz52 i
qxqz

qr
g'2GxnDd2Bsz1TGxqxqzsx .

~3.9c!

Again one finds the layer compression mode, Eq.~3.7!,
for sz . Denoting ivg'

(q)5nq22@2n12n8

21/(rGxnDd2)#qx
2qz

2/q2, the two remaining modes hav
characteristic frequencies

v~q!'S vg'
1vsx

2
D

6AS vg'
2vsx

2
D 2

1
qx

4

q2r
S Bl2qx

21
T

nDd2
qz

2D .

~3.10!

Propagation dominates forqi x̂ if the dissipation is small
enough, which is possible at low temperatures, leading t

v~q!56AB

r
lqx

2 . ~3.11!

As in the case of hexatics, coupling to the smectic d
placement field modifies the viscosity of the film. In the a
sence of dislocations, it is not possible to shear the sme
film perpendicular to the layers without breaking it. Th
glide motion of dislocations facilitates shear deformatio
Permeation can also support shear at short length scale
calculate the effective viscosity, we apply a static exter
stresss i j (q) to the system, and calculate the steady st
response forgi(q). We consider the two special cas
szx(qi x̂) andsxz(qi ẑ). In the former case one derives

szx~qx!5 iqxS n1
1/r

GznDd21lpqx
2D gz~qx!, ~3.12!

which suggests to introduce an effective viscosity (h5rn)

he f f~qx!5hS 11
D21

11d2qx
2D , ~3.13!

with the dimensionless dislocation densityD5hGznDd2 and
the effective permeation lengthd5Alp/(GznDd2). Note that
for a three-dimensional smectic the permeation length is c
ventionally defined asAhlp, i.e., the length where perme
ation and viscous damping become equally important. H
the viscous process is replaced by dislocation glide. In
-
-
tic

.
To
l

te

n-

re
e

long-wavelength limit the form of the viscositiy is similar t
the corresponding correction for hexatics:h→h„1
11/(4hG6)….

At low temperatures~or large dislocation energyED), nD
rapidly approaches 0 ase2ED /T, and the effective viscosity
of the smectic begins to diverge aseED /T. However, since
the permeation mode relaxes shear over scales shorter
the permeation lengthd, the divergence of the shear visco
ity is cut off for qx@1/d.

Since these hydrodynamic equations are valid only
wavelengths longer than the dislocation correlation length
the x direction, i.e.,qx!j'

21 where j'5(ljD
2 )1/3 @8#, this

rounding off of the viscosity will extend to the hydrody
namic range only ifj' /d5(ljD

2 )1/3/d!1. We expect the
bare viscosityh andl5AK1 /B to stay finite asT→0. How-
ever,jD diverges aseED/2T. We expect the permeation con
stantlp to behave likee2Ep /T whereEp is the energy barrier
for molecules to jump from one layer to the next. The dis
cation kinetic coefficientGz would similarly correspond to
the activation energyEg for dislocation glide by breaking
and reforming of bonds around the dislocation core. But t
energy barrier should be small compared to that required
molecular hopping across the layers, and we shall ignore
comparison. Then the above condition is satisfied provid
ED/3.Ep , so thatjD

2/3→` faster thand→`.

For an external stresssxz(qi ẑ) the stress-strain relation i
given simply by

sxz
ext~qz!52 inqzgx~qz!. ~3.14!

Thus the viscosity is not modified by the presence of dis
cations. The reason is of course that the smectic layers
ready exhibit a liquidlike response to shear parallel to
layers and no layers have to be broken.

Although we have assumed the viscosity to be indep
dent of shear rate, at high shear rates we must accoun
shear thinning brought about by the increase in unbound
locations in the presence of the shear strain. The mechan
for dislocation proliferation under a shear stress is similar
that described by Bruinsmaet al. @5# for a 2D crystal of point
particles. The stress tilts the effective potential well bindi
the dislocation pair, allowing the pair to dissociate. The ex
density of unbound dislocations facilitates further relaxat
of the stress so that the effective viscosity decreases
increasing shear rate~the shear strain in the steady state d
pends on the shear rate imposed upon the flow!. Note from
Eq. ~3.13! that the effective viscosities do indeed drop wi
increasing dislocation densitynD .

The same mechanism would also apply to shear flow i
hexatic film where disclination unbinding would occur in th
presence of a strain in the bond-orientation angle. Since
orientational order parameter is coupled to the flow as
Eqs. ~2.2!, disclinations can mediate the shear thinni
mechanism in the hexatic phase.

IV. CHANNEL FLOW OF SMECTIC FILMS

We are interested in flow under shear or a pressure gr
ent for a film oriented with the layering direction along th
channel~see Fig. 2!. From the previous discussion, we e
pect a nematiclike profile forsx unless the dislocation den
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sity is small, in which case we are in the permeation regi
and shear is only supported in a boundary layer. We ass
the channel is much wider than the dislocation correlat
lengthjD , so that the hydrodynamic treatment is valid. D
cussion of the effects of a subphase will be deferred to S
V.

In the steady state, we expectsz to be constant. Transla
tional invariance along the channel implies vanishingz de-
rivatives except for the pressure headp852]zp5const.
Correspondingly, the equations of motion~3.6! reduce to

05p81n]x
2gz2Bl2]x

3sx , ~4.1a!

05]x

gz

r
2lpBl2]x

4sx1GznDd2Bl2]x
2sx . ~4.1b!

The solution shall be expressed in terms of the dimension
dislocation densityD5hGznDd2 , and the effective perme
ation lengthd5Alp /(GznDd2). In the presence of disloca
tions, it is convenient to define the characteristic lengtl
5AD/(11D)d5Ahlp /(11D). The channel is bounded b
walls atx56a. Upon solving the equations above with th
no-slip boundary condition atgz(x56a)50 and the perme-
ation current}]x

3sx(x56a)50 @see Eqs.~3.1! and ~3.2a!#,
we find

gz~x!5
p8/n

11D FD ~a22x2!

2
1 l 2S 12

cosh~x/ l !

cosh~a/ l ! D G .
~4.2!

There are two regimes of interest here.
(i) Narrow channel: a! l :

gz→
p8

n

~a22x2!

2
,

i.e., we recover the usual Poiseuille profile expected fo
structureless fluid.

(ii) Wide channel: a@ l : There are two distinct contribu
tions togz ~Fig. 3!:

gz→
p8/n

11D FDS a22x2

2 D1 l 2~12e2(a2uxu)/ l !G
for l !uxu<a.

FIG. 2. Channel flow under the influence of a surface press
gradient along the channel: the smectic layers are normal to
flow.
e
e

n

c.

ss

a

If a2D@ l 2, then the second term can be neglected and
locations restore a fluid like response, but with an effect
viscosity

he f f5hS 11
1

D D , ~4.3!

confirming the result we found in the previous section. O
the other hand, if the dislocation density is so small th
a2D! l 2, then the second term dominates and one recov
the plug flow profile characteristic of permeation flow.

For the general case, we can estimate the effective vis
ity from the flow rate: for Poiseuille flow, the momentum
flux is given by*2a

a gzdx52p8a3r/(3h). Using this as the
definitionof he f f, we find

h

he f f
5

1

11D FD13S l

aD 2

23S l

aD 3

tanh
a

l G . ~4.4!

For a@ l ,

he f f5hS 11D

D13l 2/a2D , ~4.5!

which reduces to Eq.~4.3! for a2D@ l 2, whereas fora2D
! l 2, and henceD!1,

he f f

h
5

a2

3l 2
or he f f5

a2

3lp
, ~4.6!

reminiscent of the result 1/lpqx
2 we found for low dislocation

densities in the previous section.
For a! l , we have

h

he f f
512

2

5

1

11D

a2

l 2
or he f f5h1

2

5

a2

lp
, ~4.7!

which is a small correction due to the permeation bound
layer.

re
he

FIG. 3. In the wide channel/macroscopic limit, there are tw
contributions to flow: the solid line represents the parabolic pro
due to dislocation-assisted shear, whereas the dotted line repre
the plug-flow profile characteristic of flow in the permeation r
gime.
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V. CHANNEL FLOW WITH A NORMAL FLUID
SUBPHASE

In practice@11#, both the film and the barriers that restri
its flow to a channel geometry, float on a volume of flu
with viscosity hb and finite depthH ~Fig. 1!. If the dimen-
sionless parameter@12#

L5ahb /h

is small, then, as for a normal film, the effect of this su
phase can be neglected, and the analysis of the previous
tion is sufficient to describe the two-dimensional film flow.
the subphase drag cannot be neglected, the flow profile
be calculated through an analysis similar to Ref.@12#. We
outline the steps here, and comment on the limiting case

We consider a subphase extending fromy50 ~surface
with film! to y52H ~bottom!. Let vW (x,y) be the (z inde-
pendent! velocity field describing the subphase,vW
[(vx ,vy ,v). The velocity profile in the film itself isv0(x)
[v(x,y50).

In steady state, the equation of motion forvW in the bulk of
the subphase is

~]x
21]y

2!yW50.

The boundary conditions on the subphase are:
yW50W for x→6` or y52H or y50, uxu.a,

and
vx andvy50 for y50, uxu,a

as well. We assume that the subphase is incompressibl¹W

•yW50), which implies thatvx andvy must be zero.
For the film, the equations of motion at the surface

modified by the subphase drag:

p81h]x
2v02Bl2]x

3sx2hb]yvuy5050, ~5.1a!

]x~v02lpBl2]x
3sx!1GznDd2Bl2]x

2sx50. ~5.1b!

It is convenient to scale variables such that

x→ax, y→ay, v→S p8a2

h D v,

and

]x
3sx[S p8

Bl2D vp , ~5.2!

as well as

d→ad, H→aH. ~5.3!

All quantities are now dimensionless. Sincevp is propor-
tional to the ‘‘permeation current,’’ it obeys the same boun
ary conditions asv0.

The equations of motion can now be written as

]x
2v1]y

2v50 for 2H,y,0

with v50 at y50, 2H, ~5.4a!
-
ec-

an

.

(

e

-

11]x
2v02vp2L]yvuy5050, ~5.4b!

]x
2v05D~d2]x

221!vp , ~5.4c!

where d and D were defined in Sec. IV. Equation~5.4a!
implies thatv must have the form

v~x,y!5E
0

`

dk
A~k!

coshkH
coskx sinhk~H1y!. ~5.5!

In terms of the Fourier transformA(k), the film velocity is
then

v0~x!5E
0

`

dk A~k!tanh~kH!coskx. ~5.6!

The permeation current is obtained by solving Eq.~5.4c!
with the boundary conditions given above

vp~x!5E
0

`

dkA~k!tanh~kH!
k2/D

11d2k2

3Fcos~kx!2
cosk

coshd21
cosh~x/d!G . ~5.7!

Upon substituting these relations into Eq.~5.4b!, we obtain a
relation for the Fourier transformA(k):

15E
0

`

A~k!tanh~kH!H F Lk

tanh~kH!
1k21

k2/D

11d2k2Gcos~kx!

2
k2/D

11d2k2

cosk

coshd21
cosh~x/d!J . ~5.8!

The boundary conditionv0(x)50 for uxu.1 imposes an-
other constraint on theA(k):

E
0

`

dk A~k!tanh~kH!coskx50 for uxu.1. ~5.9!

This can be satisfied identically by expandingA(k) in terms
of Bessel functions

A~k!tanh~kH!5k1/22b (
m50

`

amJ2m21/21b~k! ~5.10!

whereb can be chosen for convenience of computation
this form is substituted into Eq.~5.8!, the x dependence can
be integrated out by multiplying with (12x2)b21Pn(b
21/2,1/2;x2), wherePn are the Jacobi polynomials, to yiel
an infinite set of linear equations for the coefficientsam :

(
m50

`

amGmn
b ~D,d,L,H !5

dn0

2b21/2G~b11/2!
,

n50,1,2, . . . . ~5.11a!

Here, the coefficients are given as integrals ink space
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Gmn
b ~D,d,L,H !5E

0

`

dk k1/22bJ2m21/21b~k!

3@k1/22bG~k;D,d,L,H !J2n21/21b~k!

2(21!ndb21/2L~k;D,d!I 2n21/21b~d21!].

~5.11b!

where I n is the modified Bessel function of ordern. The
‘‘kernels’’ for the smectic case,

G~k;D,d,L,H !5k21
k2/D

d2k211
1

Lk

tanh~kH!
,

~5.11c!

L~k;D,d!5
k2/D

11d2k2

cosk

coshd21
, ~5.11d!

embody the properties of the smectic film as well as
importance of the fluid subphase and the depth of the s
phase. Equations~5.11a! can serve as a starting point fo
numerical studies. For a structureless fluid film similar fo
mulars have been derived@12#. The expressions differ from
that for a structureless fluid by the absence ofL(k;D,d) and
the termk2D21/(11d2k2) in kernel G(k;D,d,L,H). This
term reflects the correction tohqx

2 we found in Sec. III. As
discussed there, the correction is small compared to the
mal termk2 for D@1, but can grow at low temperatures. F
wave numbersk!d21, this correction simply appears as a
enhancement of the effective viscosity. However, fork
@d21, the correction gives rise to a qualitative change in
velocity profile, characteristic of the permeation regime.

When the subphase drag on the film is large (L@1), the
coefficientsGmn

b are in leading order proportional toL. This
leads to equations identical to the ones for a normal fluid fi
on a sublayer. Further simplifications occur if one consid
the deep channel limit,H→`, which can be solved analyti
cally by choosingb53/2. One finds a semielliptical flow
profile @12#

v0~x!5
1

2L
A12x2. ~5.12!

On the other hand, for a shallow channel,H→0, an analyti-
cal sultion can be obtained by the choiceb51 which results
in plug flow @12#

v0~x!5
H

L
~5.13!

except for the boundary layer. Let us mention again t
these two limiting cases also arise for a normal fluid film a
merely reflect that the flow is dominated by the sublayer, i
the specific properties of the smectic film do not manif
themselves to leading order inL.

VI. SUMMARY

We have studied the hydrodynamics of two-dimensio
smectics incorporating dislocations@8# in the context of
e
b-

-

r-

e

s

t
d
.,
t

l

shear flow across the layers. The behavior resembles th
a nematic for length scales beyond the dislocation correla
length, with an effective viscosity that represents the role
dislocation motion in making shear possible. At smal
length scales, the permeation mode of smectics determ
the shear response. These different regimes can be obse
in channel flow under a pressure head where the cha
width sets the observation length scale, provided the d
due to the subphase can be neglected. At small disloca
densities, the permeation mode determines the flow pro
which evolves from a parabolic profile for channels narrow
than the permeation length to a plug-flow shape as the ch
nel becomes much wider. In the latter case~the permeation
regime!, shear is supported only in a boundary layer of thic
ness equal to the permeation length, hence the effective
cosity as determined by the net flow rate across the cha
grows as the square of the channel width. On the other h
for large dislocation densities, the flow profile is again pa
bolic, but with the viscosity modified by the dislocation de
sity.

The dislocation density in turn depends on the shear
through the shear strain supported by the layers in ste
state. Under this strain, dislocation pairs in the smectic
bind at a lower energy cost, increasing their equilibrium de
sity and helping to further relax the imposed strain, result
in a shear thinning effect. This effect has been calculated
a 2D crystal of point particles by Bruinsmaet al. @5#, and
could also be present in the hexatic phase, mediated by
clinations rather than dislocations. The flow results in stea
state strains in the bond-orientation order parameter, wh
are relaxed by disclination motion. It would be interesting
explore this mechanism for shear thinning for the smec
films discussed here.

When the film flows on the surface of a fluid subpha
and drag from the subphase must be taken into account
flow profile depends on the relative viscosities of the fi
and the subphase as well as on the channel width and
subphase depth. The analysis by Stone@12#, which is sup-
ported by experiments, predicts the evolution of the pa
bolic profile into a semielliptical or plug-flow profile, de
pending on whether the drag is due to the subphase visco
or a shallow subphase. In the Introduction, we showed
the same results apply to a hexatic film if described by
effective viscosity incorporating the coupling to the bon
orientation order parameter. In the situations described ab
where the subphase drag dominates the flow, these result
also applicable to smectic fillms, since the modification
the ‘‘flow kernel’’ of a smectic film with respect to an iso
tropic film is decoupled from the terms describing the infl
ence of the subphase. The subphase drag manifests its
long length scales where internal order in the film is uni
portant.
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