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Channel flow of smectic films
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The hydrodynamics of smectic films at an air-water interface is discussed, with particular focus on the
viscous response of the film under flow normal to the layers. The corrections to the response functions of the
smectic phase, arising from the coupling between the flow and the smectic order parameter, are calculated. The
results for the effective viscosity are illustrated by analyzing smectic film flow in a channel geometry. Two
limiting cases of the flow, namely, motion dominated by dislocation-induced shear-softening and dislocation-
free motion dominated by the permeation mode of mass transfer, are studied. The effect of drag from a finite
depth liquid subphase is considered. The results are compared to those for hexatic and liquid films.

PACS numbg(s): 61.30-v, 68.10.Et, 47.50:d, 83.70.Jr

[. INTRODUCTION frequencies and wave vectof§]. However, at finite tem-
peratures, bound pairs can dissociate under this separating

The rheological properties of liquid crystalline systemsinfluence which effectively tilts the potential well confining
continue to be of considerable interest because of their rickthe pair, liberating them once they escape beyond a potential
and complex behavior. Thin films of anisotropic molecules,barrier. Shear thinning might be expected once the stress-
such as Langmuir monolayers at an air-water interface, armnduced density of free dislocations becomes comparable to
relevant to many industrial applications, and as such, havéhose present due to thermal activation. Being thermally ac-
been subjected to detailed experimental studies. In particulativated, the free dislocation density, and hence the viscous
the viscous response of liquid crystalline films is often foundresponse, should be very sensitive to temperature. Experi-
to be non-Newtonian. Among the dominant causes is couments conducted by SchwalfiZ] on anisotropic hexatic and
pling of the flow to molecular alignment. In smectic films crystalline phases of Langmuir monolayers do indeed see a
(crystalline in one dimension, but liquidlike in the otheghe  strong temperature dependence of the critical shear rate for
presence of unbound dislocations becomes a major factamset of non-Newtonian behavior.
affecting viscous response. When the film is riding over an- In this paper we study a simpler problem, the linear hy-
other phase, usually water, viscous drag from this subphasdrodynamics of two-dimensional smectic films in a channel
if large, can modify the flow profile of the film quite signifi- flow geometry. Dislocations still play an important role, and
cantly. it is easier to analyze their effect on the smectic order em-

The coupling between molecular alignment and flow hasodied in asingle set of Bragg planes. Although we do not
been seen in some cases in experiments by Mingataatl ~ study this here, channel flow of two-dimensional smectics
[1], Maruyamaet al. [2], and Kurnaz and Schwarf3]. The  would also be a promising context in which to explore a
experiments involve Langmuir monolayers of rod-shapedractable model of shear thinning.
molecules that are usually tilted with respect to the surface In the absence of external strains, free dislocations or dis-
normal, forming a hexatic phase with anisotropic in-planeclinations don’t occur in the most ordered two-dimensional
bond orientations. Typically the film consists of domains of aphases; they are instead bound in pairs of opposite charges
liquid crystalline phase coexisting with another liquid crys- by a logarithmic potential. However, in two-dimensional lay-
talline phase or with the liquid expanded phdse orienta- ered materials such as smectics or cholesterics, there is ex-
tional ordej. The domains can be distinguished throughponential decay of translational order in both the layering
Brewster angle microscopy which is sensitive to moleculadirection, and the liquidlike direction along the laygs3. As
orientation, making it possible to follow the shape and move-a result, isolated dislocations have a finite energy and exist in
ment of the domains along the flow. There is evidence of finite concentration at any finite temperature. In these ma-
nonlinear shear respon§g,4] emerging from such studies, terials, shear response at long wavelengths is primarily due
as well as of the molecular orientation being influenced byto the free dislocations; the viscosity diverges inversely as
flow [1,2]. the dislocation density when it becomes small at low tem-

Shear thinning has often been observed in experimentgeratures. This divergence is cut off at short length scales by
involving Langmuir monolayer$3,4]. A possible explana- the permeation mode of mass transfer in smectics, where a
tion of this phenomenon is provided by Bruinsetaal.[5] in layer distortion induces molecules to jump from layer to
terms of shear-induced defect proliferation. Dislocation dedayer without affecting the layering structure, allowing the
fects in a solid, if unbound, can relax an applied strain bydistortion to relax over a finite distance.
moving in response to the resulting stress. Since the force on In three dimensions, one finds diverging smectic response
such a defect depends on its “charge,” oppositely chargedunctions near the second-order smectic-to-nematic transi-
defects tend to separate under an external stress. Tighttion. The coupling of the nematic order parameter to fluctua-
bound pairs cannot contribute to the steady state viscous réions in the magnitude of the smectic order parameter causes,
sponse, although they can modify the response at nonzeamong other quantities, the permeation constant of the smec-
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tic and the viscosity denoteg; in the literature, to diverge ’ F w0

[9]. However, in two dimensions, a dislocation-driven ther- w /\
modynamic transition to the nematic state occurs at zero 4 y=0 .
temperaturd8]. At a finite temperature, the nematic melts

into an isotropic liquid via a disclination unbinding transi- 30

tion. Below this temperature, local smectic order is disrupted
by singularities in the phase of the order paramédie., i

dislocationg. However, the local smectic order parameter mﬁﬂ X

has a finite magnitude, and fluctuations in the magnitude are

@rrellevant in the re.normalliz.ation sengEd]. Thus renqrmal- . FIG. 1. Channel flow geometry with a subphase. The film and
ization of the elastic coefficients and response functions as the barriers forming the channel are on the surface of a water table.

the three_'dimenSionéBD) case does not occur. . A surface pressure gradient is applied to the film along the channel.
Coupling of the film flow to a subphas@ fluid body  op, the right are the typical flow profiles at various depths.
supporting the film on its surfagean significantly alter its

flow profile. Such experiments have been conducted b
Schwartz and co-workefd 1,3] using Langmuir monolayers
on water. When the subphase drag dominates the flow, t
flow profile becomes semielliptical. Storjd2] has per-
formed calculations which confirm this profile and also yield
the profiles interpolating between the elliptical and the para
bolic, as the viscosity of the film relative to that of the sub-
phase is increased. The depth of the subphase was also a
parameter in the calculations, since decreasing the depth re-
sults in increased drag. As we show below, Stone’s results SF= EKAJ d2r|V 6|2, 2.1)
can also be applied to hexatic films. 2

In the next section, we briefly review the equilibrium

properties of two-dimensional hexafi¢3] and smectid8]  \hich describes the long-wavelength distortions of the local
films. Section Il discusses the hydrodynamics of two-pon4 angleg. The temperature-dependent stiffness constant

dimensional smectics, and the implications of the coupling s finite in the hexatic phase. A renormalization calcula-
between the smectic order parameter and the flow for the o <hows thatk jumps from an universal value to zero
response functions of both quantities. Section IV looks a A

S fvhen the hexatic melts via a Kosterlitz-Thouless transition
flow of a smectic film in a channel flow geometry, and €X-into an isotropic liqui
. R . pic liquid.
amines the behavior in different regimes of the channe|

. . The hydrodynamics of partially ordered hexatic films has
width. In S.ec.. V., we consider the effect of 'subphase drag OBeen studied in detail by Zippeliwt al.[13]. These authors
the smectic film flow as compared to previous results for a

) S %ind a correction to the effective viscosity under flow condi-
Isotropic _f||m. The results of both Secs. IV an_d N areé €oN-tinns where the hexatic bond orientation is pinned at the
sistent with the results of_ Sec. Il for the effec_tlve viscosity. boundaries, as compared to the case where the bond orienta-
The last section summarizes the results of this paper. tion is free to rotate. The correction comes from coupling of
the flow to the bond orientation order parameter under the
IIl. REVIEW OF HEXATIC AND SMECTIC FILMS ggf‘s[”l"’:‘;]r)‘t imposed by the boundariesee Appendix A of

It was recognized quite some time ago that two- A similar coupling can be enforced by imposing a pres-
dimensional films allow for an unusual phase diagram charsure gradient on the flow. In the experiments conducted by
acterized by an intermediate hexatic phase, separating th@urnaz and Schwartf3] on hexatic film flow, the domain
solid and conventional liquid phase. The origin of this phe-structure of the hexatic mesophase can impose constraints on
nomenon lies in the pronounced role of dislocations, i.e.the bond orientation at domain boundaries, thus increasing
pointlike translational defects in a two-dimensional crystal.the viscosity from its bare value. Annealing of the domains
Dislocations interact via elastic deformations of the solidwould then lead to a reduction in the effective viscosity. The
similar to charges in a two-dimensional Coulomb gas. Belowexperimental signature of this effect would be a time-
the melting temperature dislocations of opposite Burgerslependent viscous response. Some transients have indeed
vector are bound in pairs and the overall effect is a finitebeen observed in these experiments, although other factors
renormalization of the elastic moduli. There is quasi-long-may be involved, such as domain boundary elastici{yand
range translational and long-range orientational order whiclshear thinning.
manifests itself in a structure factor as measured by, e.g., To illustrate how to incorporate effects of a subphase into
x-ray scattering, which exhibits a regular array of quasi-the hydrodynamics of a partially ordered film, we adapt the
Bragg peaks. analysis of Ref[12] to films with hexatic order. In the pres-

At the melting temperature the solid melts into a hexaticence of a subphase, the hydrodynamic equations of motion
when these dislocations unbind and destroy the quasi-londer a hexatic are modified by adding a subphase drag term to
range translational order just as in a liquid. However, thethe viscous force: denoting by the co-ordinate across the
hexatic retains a quasi-long-range sixfold symmetry. As ahannel,z along the channel, anglalong the channel depth
consequence the structure factor now exhibts concentric difisee Fig. 1, one derives the equations of motifit8]

¥raction rings which have an angular modulation superim-
osed (this modulation vanishes as a small power of the
stem size with increasing illumination ayedt a still

higher temperature this modulation disappears and the

hexatic melts into a conventional isotropic liquid with both

short-ranged translational and orientational order.

The free energy of a hexatic involves an addtitional term
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dd, Ka The Landau-Ginzburg free energy describing the smectic
ot '+ x| N0~ 7(9X(9 /) ayvz|film surface takes the fornj15]
(223 2 a 2 u 4 C” 2 C, . 2
F= | d¥r| S+ [l *+ S 01"+ = [(9x—idodn) ¢
09 _ 002 1520 2.2b ’ ) ’ ’
ot 2p LeKadkf, (2.2b

K
+71(&X5n)2+ f(azan)Z . (2.6)
where g=pv is the surface momentum densitlyg the ki-
netic coefficient corresponding to dissipative processes of thg o K, andKs are splay and bend elastic constants. The

hexatic bond-angle order the surface shear viscosity, st elastic constank., is absent in two dimensions. The
the viscosity of the bulk subphase, and the surface pres- coupling betweerd,y and Sn=(A—2) - is required to sat-

sure gradient driving the film down the channel. isfy the rotational invariance ofr. Terms of order higher
Assumingdy ¢ is time independent in the steady state, Wethan uadratic in the order ararﬁeter and its radiegts have
have d,9,0=0. Therefored;# must be constant across the q P : grad .
been neglected. Well below the mean-field smectic-nematic

channel. Since, is an even function ok in this flow situa- transition temperature, fluctuations in the amplitude/afan
tion, 4,0 is odd, and hence, must be zero. Equati@r2b P ' P

then gives us the coupling between the flow and the bon@!SO be ignored, and in the absence of singularit!e};@dis-
orientation: clinationg, én can be integrated out.The remaining long-

wavelength fluctuations can be expressed completely in
terms of the layer displacemeutr) as[14,8|

920= 2.3

- ZPFGKAanZ'
2 1 2 2( 92, 1\2
]—‘=f drsB[(d,u) +N(du) <], (2.7
Upon substituting this result into ER.2a, we find 2

1 with B=y3a3c), and \>=K,/B. Uniform gradients ofu
n+ F) r9>2<vz— b ayvz|f”m surface- along the layer directiondgu) don’t cost any energy, be-
6 2.4 cause they represent tilting of the layering direction. This
' important difference compared to two-dimensional solids,
Thusg, obeys an equation of motion identical to that for an hexatics, gtc., "T_‘p"es e thg lowest energy defects in the
isotropic film with a subphase, but with the modified viscos-SYStem. dislocations, have fanite energy Ep, and are not
ity 7+ 1/4', and we can take over the results of Raf]. constrained to be bound in pairs at low temperat(igés

As we shall se€Sec. V), this simplification does not apply to Whergas a smecti_c Wif[h thermally excited phonons would
smectic flow. behave like a nematic with only a splay degree of freedom,

In contrast to hexatics, smectics are characterized by A'¢ Présence of dislocations allows for bend i_n the_ average
crystal-like periodic modulation of the density along one di- /&Y€ Orientation over scales larger than the typ'cgl_sgﬁlf
rection, say, the direction, and liquidlike correlations per- & gorErelilfd smectic blob™[8], given by fD:”D2
pendicular to it. In two dimensions, we take this to be the ~ap€P"® (ap is a dislocation core diameterap

direction. The preferred orientation of the “layers” is also ~dy\d). Therefore the long-wavelength behavior of the

the average direction along which the directorsf the nem-  SMectic is that of a nematic with free energy

atic molecules are oriented. Although it represents a sponta- 1

neously broken rotational symmetry, the layer orientation j_-:J d2r=[K (9, 0N) 2+ K4(3,6N)?], 2.9
can be forced by boundary conditions on the molecules, or 2

even by flow. Smectic order is characterized by a wave vec-

~ Y 2 .
tor qo=z27/d, whered is the layer spacing, usually slightly WhereN denotes the layer normal, aKdo £p, . As discussed

99,
—=0=7"+
ot O=m

larger than the molecular length. by Nelson and P_elcovit516], n_onlinearities in the nematic
The smectic density wave can be representefd. 4k free energy modify the nematic Frank constaiiisandK,
. such that at scales longer thaleéo’®” the nematic can be
p(r)=pol1+4(r)e'do ], (2.5  described by a single Frank constan#3 . In practice, this

length scale can be very large compared to typical system
Here, y(r) is the complex smectic order parameter: its am-sjzes, so one usually sees a constant nematic described by
plitude represents the strength of the smectic orderingtwo Frank constants. A study of the dynamics of smectic
whereas the phasg(r)=qou(r) describes the phonons as- films, taking dislocations into accoufi8], yields nematic
sociated with broken translational symmetry along the layerbehavior corresponding to E@2.8) at long length scales,

ing direction. Phonons in two dimensions are very effectivewith a nematic kinetic coefficient that vanishes likg
in destroying the one-dimensional translational order: Thexe Eo/keT at low temperatures.

correlation ((r)*(0)) decays as the exponential of a
power of the displacement. Since the square of the wave
vector appears in the exponef], the contributions of
higher harmonics ofjy in the density modulation are less  The hydrodynamic variables for a two-dimensional smec-
important. tic are the layer displacement and the conserved momen-

I1l. SMECTIC HYDRODYNAMICS
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tum densities),, g,. In this section we focus for simplicity Jo=npl-f—TI-Vm. (3.5
on the dynamics of free-standing smectic filpd§], where - -

the momentum is conserved to a good approximation. Th : . . . .
drag due to a liquid subphase is considered in Sec. V. W?e-|ere we have introduced the unsigned dislocation density

assume the smectic to be incompressible, and so neglect demp: Ve have also setg=1 for convenience. The mobility

sity fluctuations, setting the density=const and conse- tensorI” is diagonal in the coordinate system aligned with

quently d,g,+d,g,=0. The viscous stress tensor of an the preferred axis of the smectic. Since the principal values

uniaxial two-dimensional fluid is characterized by four inde-r.Z andI' correspond to dislocation glide and climb, respec-

pendent viscosities as opposed to five for the three- tVelY, we expect’,>1',. A strain results in a net force on
dimensional cage Incompressibility reduces this number to d'S|°Cat'°nS’2V'ZZ" the 2D analog of the Peach-Koehler force
2. The independent components of the symmétraceless |-~ d(BS;,BA7d,s). Thus strain can be released by a flow of
strain rate tensor can be written as,d,+d,g,)/2 and dislocations. This process is similar to the charge separation

(9,9x— 9,9,)/2, respectively, which have to be related to thedue to an applied electric field in a semiconductor. Note that
Viscous stress tensori’j . Symmetry impliesa’,= (3,0, the Einstein relation connects the mobility embodied in the

first term to the diffusion constant implicit in the second
T 0x92) 00— 05~ (v V.,)(&ng_ang)' The . frace oy . through the common matrik P
+ o, can be absorbed in the pressure, and in the following For later purposes we also include external streeﬁé%
we assume that this has been done already. Upon denotin . :
y- P 9n the momentum balance. The equations of motion are then

oF 2 244
hz—sz(ﬁz—)\ ), (3. 90y , ’ ot ot
It == kPt v, 9xt v Ixd9;— IxTyx — 9z0%;
the equations of motion can be written [d4] (3.69
Ju g,
—==24xh, 3.2 99 )
ot p P (3.29 a—tZ=B(ast—>\2&§sX)—azp+ v32g,+ v 0,0,y — Iy X!
P -9 o_ext, 3.6b
% = — 0P+ vdlg+ v’ 649,9,, (3.2b zzz (3.60
ISy 9; 4 2
9 —Z =y — 4+ Ay B(040,5,— N2dss,) + T' [ npd?BA2d2s
%:h_&zp*—mﬁgz—kvraz&xgx’ (32d ﬁt g p P e XX ’ -
- Taz( IxS;~ (9ZSX)], (3-6C)
wherep is the surface pressure ang the permeation con-
stant for the smectic. Permeation refers to the dissipative Js, g,
mode of mass transfer in smectics where the molecules jump i d;— +)\pB(&ﬁsZ—)\Z&fzazsx)—l“x[nDdzBsz
from layer to layer in order to relax a layer distortion. P
Dislocations in the smectic introduce cuts into the dis- —Tay(04S,— 3,5, 1. (3.60

placement field, but it is possible to define locally the gradi-
ents=Vu as a single-valued quantif§]. In the presence Of. Ignoring the external stresses one can calculate the eigen-

dislocations,s, and s, are considered as independent vari- 2 des of the system. If conservation of momentum is ne-
ables. Since there are cuts in the displacement field, the lin R S
. ) oy lected[8], Egs.(3.6) lead in the limit of long wavelengths
integral fs-dr does not vanish for closed loogs if the 8 [8], Eds. (3.6 g g

. . T and low frequencies to a relaxation frequency $pi(which
loop encloses dislocations. This line integral counts the num; :
; . . ) describes layer compressjon
ber of cuts in units of the layer spaciny Stokes’ theorem

implies V xs=—ydm(r), where m(r) is the dislocation
density. Since the number of dislocations is conserved one
has the continuity equation

wg =—il,npd’B, (3.7

and fors, (i.e., layer undulationsa diffusive frequency

om+V-Jp=0, (3.3
—_ 2 2~2 2
where Jp is the two-dimensional dislocation current. The @5 ()= ~1 (T Nod™BATC+ T103). 38
time evolution of the “strain”s can be inferred from its
irrotational and its solenoidal part Using the relationSn= g,u [14], this last result corresponds
to a nematiclike behavior for the directhie= z+ s,x. Includ-
Jas _du ing g, ,9, in the hydrodynamic treatment introduces a pair of

E:VEMYX‘]D' (34 coupled g-s, modes with both diffusive and propagating
characteristics. The pressure is eliminated via the incom-
A Fokker-Planck description for the diffusion of the disloca- pressiblity condition in Fourier spaogg,+9,9,=0. The
tions in the strained smectic yields an expression for thaise of the transversal momentum densjty, =q,9,— 0,9,

dislocation current8] results to leading order in the wave vector in
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. q
—iwg, =—iB Ex(qzsz+ \2q3s,) — vq%g,

2.2
+(2v+2v’)qx—jzgl, (3.99
q

2
—iws,=—1i Z—;gL — (T ,npd?BN22+TT,02)s,

_()\pB_TFZ)quZSZ! (3-9b)
—iws,=—i qxgzgL —T',npd?Bs,+ TI',q40,Sy -
(3.909

Again one finds the layer compression mode, E17),
for s, . Denoting fwg (a)=vg®—[2v+20

—1/(pTynpd?)19292/g?, the two remaining modes have

characteristic frequencies

o +w5x
o(q)~| —5—
—_ 2 4
ng wsx Ox 2.2 T 2
+ - -
+ \/( 5 +q2p BAeQ;+ nDdqu .

(3.10

Propagation dominates fc11||>A< if the dissipation is small

enough, which is possible at low temperatures, leading to

(3.11

B
w(g)==* \/:Mﬁ-
p
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long-wavelength limit the form of the viscositiy is similar to
the corresponding correction for hexaticsy— 7(1
+1/(471g)).

At low temperaturesor large dislocation enerdyp), np
rapidly approaches 0 as 50’7, and the effective viscosity
of the smectic begins to diverge a&o'". However, since
the permeation mode relaxes shear over scales shorter than
the permeation length, the divergence of the shear viscos-
ity is cut off for g,>1/6.

Since these hydrodynamic equations are valid only for
wavelengths longer than the dislocation correlation length in
the x direction, i.e.,qu<&, ' where &, =(\£3)*° 8], this
rounding off of the viscosity will extend to the hydrody-
namic range only if¢, /6= (\¢£3)¥¥6<1. We expect the
bare viscosityy and\ = {K /B to stay finite asdf— 0. How-
ever, &p diverges a®™0’?T, We expect the permeation con-
stanth , to behave likee™ Ep/T whereE, is the energy barrier
for molecules to jump from one layer to the next. The dislo-
cation kinetic coefficieni’, would similarly correspond to
the activation energye, for dislocation glide by breaking
and reforming of bonds around the dislocation core. But this
energy barrier should be small compared to that required for
molecular hopping across the layers, and we shall ignore it in
comparison. Then the above condition is satisfied provided
Ep/3>E,, so thaté3®—x faster thand— .

For an external stressxz(qu) the stress-strain relation is
given simply by

ext

Oxz (d,) = —1v0,09,(d,). (3.19

Thus the viscosity is not modified by the presence of dislo-
cations. The reason is of course that the smectic layers al-
ready exhibit a liquidlike response to shear parallel to the
layers and no layers have to be broken.

Although we have assumed the viscosity to be indepen-

As in the case of hexatics, coupling to the smectic diSent of shear rate, at high shear rates we must account for

placement field modifies the viscosity of the film. In the ab-gpegr thinning brought about by the increase in unbound dis-
sence of dislocations, it is not possible to shear the smectig,cations in the presence of the shear strain. The mechanism
film perpendicular to the layers without breaking it. The for gisiocation proliferation under a shear stress is similar to
glide motion of dislocations facilitates shear deformation.inat described by Bruinsmet al.[5] for a 2D crystal of point
Permeation can also support shear at short length scales. Faiicles. The stress tilts the effective potential well binding
calculate the effective viscosity, we apply a static externaine gislocation pair, allowing the pair to dissociate. The extra
stressoij(q) to the system, and calculate the steady stat@ensity of unbound dislocations facilitates further relaxation
response forgi(q). We consider the two special cases of the stress so that the effective viscosity decreases with
o,,(d)X) ando,q||2). In the former case one derives increasing shear rafghe shear strain in the steady state de-
pends on the shear rate imposed upon the)flvote from

Eq. (3.13 that the effective viscosities do indeed drop with
increasing dislocation density; .

The same mechanism would also apply to shear flow in a
hexatic film where disclination unbinding would occur in the
presence of a strain in the bond-orientation angle. Since the
orientational order parameter is coupled to the flow as in
Egs. (2.2), disclinations can mediate the shear thinning
mechanism in the hexatic phase.

1/p
I npd?+ X053

sz(qx):iqx( v+ )gz(qx)v (3.12

which suggests to introduce an effective viscosity=(pv)

-1
eff —
7° (0 77( 1+ 1+52q§). (3.13
with the dimensionless dislocation density= #I" ,npd? and
the effective permeation lengif= \/)\p/(FZnDdz). Note that
for a three-dimensional smectic the permeation length is con- We are interested in flow under shear or a pressure gradi-
ventionally defined as/n\,, i.e., the length where perme- ent for a film oriented with the layering direction along the
ation and viscous damping become equally important. Herehannel(see Fig. 2 From the previous discussion, we ex-
the viscous process is replaced by dislocation glide. In th@ect a nematiclike profile fos, unless the dislocation den-

IV. CHANNEL FLOW OF SMECTIC FILMS
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velocity profile

parabolic

3
2D

flow

Al

/727222

x

2a FIG. 3. In the wide channel/macroscopic limit, there are two

FIG. 2. Channel flow under the influence of a surface pressurgontributions to flow: the solid line represents the parabolic profile
gradient along the channel: the smectic layers are normal to theue to dislocation-assisted shear, whereas the dotted line represents
flow. the plug-flow profile characteristic of flow in the permeation re-

gime.

sity is small, in which case we are in the permeation regime
and shear is only supported in a boundary layer. We assurmié a?A>12, then the second term can be neglected and dis-
the channel is much wider than the dislocation correlatiorlocations restore a fluid like response, but with an effective
length&p, so that the hydrodynamic treatment is valid. Dis- viscosity
cussion of the effects of a subphase will be deferred to Sec.
V.

1+1
A

ff_
In the steady state, we expestto be constant. Transla- n°=7

tional invariance along the channel implies vanishinde-
rivatives except for the pressure head=—d,p=const.  onfirming the result we found in the previous section. On
Correspondingly, the equations of motit6) reduce to the other hand, if the dislocation density is so small that
2 2 H
— ' 4+ 20— BN2G3 . a“A<l*, then the second term dominates and one recovers
0=+ vdiG~ BA0xS, (4.13 the plug flow profile characteristic of permeation flow.

g For the general case, we can estimate the effective viscos-
0=t9x—z—7\pB)\2(9§Sx+ I’ZnDdZB)\ZaisX. (4.1b ity from the flow rate: for Poiseuille flow, the momentum

p flux is given by [? ,g,dx=27"a%p/(37). Using this as the
Hefinitionof 7°'", we find

, 4.3

The solution shall be expressed in terms of the dimensionle
dislocation densityA = I',npd? , and the effective perme-

ation lengths=\\, /(T ,npd?). In the presence of disloca- n 1 (1% a
tions, it is convenient to define the characteristic lenigth 2 1+A A3 _3(5 tanky|. (4.4
=JA/(1+A)6=\n\,/(1+A). The channel is bounded by
walls atx=*a. Upon solving the equations above with the por g1,
no-slip boundary condition a,(x=*a)=0 and the perme-
ation currentex ﬁfsx(x= +a)=0 [see Eqgs(3.1) and(3.23], 14A
we find 7=y —> (4.5
A+31?%/a?
w'lv[ (@%=x%) coshix/I)
92(x)= 1+A 2 ( ~ coshall)/ |’ which reduces to Eq4.3) for a?A>12, whereas fora?A
(4.2  <I? and hencA<1,

There are two regimes of interest here. off .2 >

(i) Narrow channel: a<l: A e 4.6

n 312 g 3)\p’ .
7' (a®—x?)
9T

reminiscent of the result léqi we found for low dislocation

. . ' densities in the previous section.
i.e., we recover the usual Poiseuille profile expected for a
For a<l, we have

structureless fluid.
(ii) Wide channel: &1: There are two distinct contribu-

2 2
tions tog, (Fig. 3): n 2 1 a eff_ +Ea_
v [a2—x2 ST T NCEA A W
gﬁﬂ A a—x +12(1— e~ (@I
1+A 2 which is a small correction due to the permeation boundary

for I<|x|=<a. layer.
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V. CHANNEL FLOW WITH A NORMAL FLUID 1+ aivo_vp_Aayﬂy:O:Ov (5.4b)
SUBPHASE
. . . . 2 _ 2
In practice[11], both the film and the barriers that restrict Ivo=A(8%95—D)vy, (5.49

its flow to a channel geometry, float on a volume of fluid

with viscosity 7, and finite deptrH (Fig. 1. If the dimen- Where 6 and A were defined in Sec. IV. Equatiof5.43
sionless paramet¢.2] implies thatv must have the form

A=an,ln

= Ak .

| - . v(x,y)—J0 dk costhCOSkxsmhk(H+y)' (5.5

is small, then, as for a normal film, the effect of this sub-

phase can be neglected, and the analysis of the previous sgg-terms of the Fourier transfor(k), the film velocity is

tion is sufficient to describe the two-dimensional film flow. If {hen

the subphase drag cannot be neglected, the flow profile can

be calculated through an analysis similar to Ra2]. We %

outline the steps here, and comment on the limiting cases. vo(X) = fo dk A(k)tanh(kH)coskx. (5.6
We consider a subphase extending frgm0 (surface

with film) to y=—H (bottom. Let v(x,y) be the ¢ inde-  The permeation current is obtained by solving E§.40
pendent velocity field describing the subphase;  with the boundary conditions given above
=(vy,vy,v). The velocity profile in the film itself i o(x)
=v(x,y=0). *

In steady state, the equation of motion fom the bulk of vp(X)= fo dkA(k)tanf(kH) 1+ 52K2
the subphase is

2

cosk
cogkx)— —coshx/o6)|. (5.7
coshs™*

2 2\~
(9x+dy)v=0. X

The boundary conditions on the subphase are:
v=0 for x— = ory=—H ory=0, |x|>a,
and
vy andvy=0 fory=0, [x|<a "
as well. We assume that the subphase is incompressible ( 1= fo A(k)tan}‘(kH){
-v=0), which implies thav, andv, must be zero.
For the film, the equations of motion at the surface are K2/ A
modified by the subphase drag:

Upon substituting these relations into Ef.4b), we obtain a
relation for the Fourier transform(k):

Ak 2 k2/A .
tanf(kH) © +1+ 5%k? casta)

cosk

- coshix/d) ;. (5.8
1+ 8%k? coshs™ ! }
7'+ ndguo—BA2dis,— mpdyvly—0=0,  (5.1a N _
The boundary condition(x)=0 for |x|>1 imposes an-
Ix(vo—NpBN2d5s,) + ' ,npd?BA237s,=0.  (5.1b) other constraint on tha(k):

It is convenient to scale variables such that f dk A(k)tant(kH)coskx=0 for [x|>1. (5.9
0

' a?

X—aX, y—ay, v— v,

This can be satisfied identically by expandifa¢k) in terms
of Bessel functions

and
7 A(K)tanh(kH) =k">"# X, andom-12: (k) (5.10
Bs=—|v (5.2 m=0
X=X B2 p .
where 8 can be chosen for convenience of computation. If
as well as this form is substituted into Eq5.8), the x dependence can
be integrated out by multiplying with (@x%)#~P.,(B
6—as, H—aH. (5.3 —1/2,1/2x?), whereP, are the Jacobi polynomials, to yield

" . . . . an infinite set of linear equations for the coefficieats:
All quantities are now dimensionless. Sineg is propor-

tional to the “permeation current,” it obeys the same bound- o s
ary conditions as . > a,.GE (ASAH)=— 2
The equations of motion can now be written as m=o " 287121 (B+1/2)
5)2(U+3§U:0 for —H<y<O0 n=0,1,2.... (5.113

with v=0 at y=0, —H, (5.4a Here, the coefficients are given as integralk ispace
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% shear flow across the layers. The behavior resembles that of

Ghi(A,8,AH)= f dk K2 Bdpm 1. p(K) a nematic for length scales beyond the dislocation correlation
0 length, with an effective viscosity that represents the role of
X[kl’z‘ﬁG(k;A,5,A,H)J2n_1/2+ﬂ(k) dislocation motion in making shear possible. At smaller

length scales, the permeation mode of smectics determines
—(- 1)n5ﬁ—1/2L(k;A,5)|2n71/2+ﬁ(5—1)]_ f[he shear response. These different regimes can be observed
in channel flow under a pressure head where the channel
(5.110  width sets the observation length scale, provided the drag
due to the subphase can be neglected. At small dislocation
densities, the permeation mode determines the flow profile,
which evolves from a parabolic profile for channels narrower
K2/ A Ak than the permeation length to a plug-flow shape as the chan-
+ nel becomes much wider. In the latter cqtiee permeation
5?k2+1 tanhkH)’ regime, shear is supported only in a boundary layer of thick-
(5.119 ness equal to the permeation length, hence the effective vis-
cosity as determined by the net flow rate across the channel
k2/ A cosk grows as the square of the channel width. On the other hand,
1+ 5% cosho—1" (5.11d  for large dislocation densities, the flow profile is again para-
bolic, but with the viscosity modified by the dislocation den-

embody the properties of the smectic film as well as thedl: _ o

importance of the fluid subphase and the depth of the sub- The dislocation density in turn depends on the shear rate
phase. Equationé5.11a can serve as a starting point for through the shear strain supported by the layers in steady
numerical studies. For a structureless fluid film similar for-State. Under this strain, dislocation pairs in the smectic un-

mulars have been derivéd2]. The expressions differ from bind at a lower energy cost, increasing their equilibrium den-

that for a structureless fluid by the absencé ¢; A, 8) and sity and helping to further relax the imposed strain, resulting
the termk?A~/(1+ 62%k?) in kernel G(k:A,8,A,H). This in a shear thinning effect. This effect has been calculated for

a 2D crystal of point particles by Bruinsnet al. [5], and

term reflects the correction toq§ we found in Sec. lll. As Id also b t'in the hexatic oh diated by di
discussed there, the correction is small compared to the nofPu'd aiso be present in the Nexatc phase, mediated by dis-

il fermi for 1, but can gro atlow temperatures. For 0711 Fr 1 docatons Te flow resuls n steady
wave numberk<s ", this correction simply appears as an are relaxed by disclination motion. It would Ee interest,in to
enhancement of the effective viscosity. However, for d by . C gx

1 . . . oL : explore this mechanism for shear thinning for the smectic
> ¢ -, the correction gives rise to a qualitative change in th

: : - . - Silms discussed here.
velocity profile, characteristic of the permeation regime. When the film flows on the surface of a fluid subphase,
When the subphase drag on the film is largex(1), the .
- 8 . . ) . and drag from the subphase must be taken into account, the
coefficientsGy,,, are in leading order proportional tb. This

: i . . ... _flow profile depends on the relative viscosities of the film
leads to equations identical to the ones for a normal fluid f|Imand the subphase as well as on the channel width and the

on a sublayer. Furt_he_r simplificqtions occur if one ConSiqer%ubphase depth. The analysis by Stpba], which is sup-
the deep chanr_1e| limitd —eo, Wh'.Ch can be s_olv_ed_ analyti- ported by experiments, predicts the evolution of the para-
cally by choosing=3/2. One finds a semielliptical flow e profile into a semielliptical or plug-flow profile, de-
profile [12] pending on whether the drag is due to the subphase viscosity
1 or a shallow subphase. In the Introduction, we showed that
vo(X)= 2—1—X2. (5.12 the same results apply to a hexatic film if described by an
2A effective viscosity incorporating the coupling to the bond-
orientation order parameter. In the situations described above
where the subphase drag dominates the flow, these results are
also applicable to smectic fillms, since the modification to
the “flow kernel” of a smectic film with respect to an iso-
tropic film is decoupled from the terms describing the influ-

where |, is the modified Bessel function of order The
“kernels” for the smectic case,

G(k;A,8,AH)=k*+

L(k;A,8)=

On the other hand, for a shallow channdhk-0, an analyti-
cal sultion can be obtained by the chojge 1 which results
in plug flow [12]

vo(X)= E (5.13 ence of the subphase. The subphase drag manifests itself at
A long length scales where internal order in the film is unim-
except for the boundary layer. Let us mention again thaP ortant.

these two limiting cases also arise for a normal fluid film and

merely re_f!ect that the flow is dominat'ed .by the sublayer,_ ie., ACKNOWLEDGMENTS
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